Radio Frequency Optics Design of the 12-Meter Antenna for the Array-Based Deep Space Network

نویسنده

  • W. A. Imbriale
چکیده

Development of very large arrays of small antennas has been proposed as a way to increase the downlink capability of the NASA Deep Space Network (DSN) by two or three orders of magnitude, thereby enabling greatly increased science data from currently configured missions or enabling new mission concepts. The current concept is for an array of 400 × 12-meter antennas at each of three longitudes. The DSN array will utilize radio astronomy sources for phase calibration and will have wide bandwidth correlation processing for this purpose. JPL currently is building a 3-element interferometer composed of 6-meter antennas to prove the performance and cost of the DSN array. This article describes the radio frequency (RF) design of the 12-meter reflector that will use the same feed and electronics as the 6-meter antenna. The 6-meter antenna utilized Gregorian optics to enable tests with a low-frequency prime focus feed without removing the subreflector. However, for the 12-meter antenna, maximum gain divided by noise temperature (G/T ) is the overriding requirement, and a trade-off study demonstrated that Cassegrain optics is far superior to Gregorian optics for maximum G/T . Hence, the 12-meter antenna utilizes Cassegrain optics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circularly Polarized Circular Slot Antenna Array Using Sequentially Rotated Feed Network

This paper presents the design, simulation, and measurement of two low-cost broadband circularly polarized (CP) printed antennas: a single element and an array at C band. The proposed single element antenna is excited by an L-shaped strip with a tapered end, located along the circular-slot diagonal line in the back plane. From the array experimental results, the 3 dB axial ratio bandwidth can r...

متن کامل

Design of Rotman Lens Antenna at Ku-Band Based on Substrate Integrated Technology

In this research work, a multibeam antenna which is a combination of a beamformer network (BFN) and a linear array antenna, has been designed. A Rotman lens has been chosen as beamformer network and Vivaldi antennas have been selected for constructing array antenna. The Substrate Integrated Waveguide (SIW) was used for implementing Rotman lens. After explanation the structure of Substrate integ...

متن کامل

Antenna Design and Non Linear Simulation of Rectifier for Wideband and Multi-Tone Radio Frequency Energy Harvesting

In this paper, a wideband rectenna without using matching networks is presented. In addition of wide bandwidth, the omnidirectional radiation pattern, maximum radio frequency to dc conversion efficiency, harvesting capability of the minimum input power level, easy fabrication process cause this antenna be a good choice for radio frequency energy harvesting applications. Matching network has bee...

متن کامل

A New Design of Log-Periodic Dipole Array (LPDA) Antenna

This paper presents a new approach for design of the log-periodic dipole array antenna (LPDA) based on using of different design parameters in the LPDA elements to control the antenna behavior. In the proposed procedure, the design parameters can control the value of forward gain over the operating frequency range, and also adjust the gain flatness. Furthermore, this design procedure can decrea...

متن کامل

A New Compact Ultra-wideband Linear Antenna Array for Target Detection Applications

This paper presents a low-cost compact planar microstrip-fed monopole antenna and its four-element array design for ultra-wideband (UWB) wireless communication and target detection applications, respectively, operating in the frequency span of 3 GHz to 11 GHz. A prototype was fabricated and then measured based on optimal parameters. The results of reflection coefficient (S11) and radiation patt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005